Федеральная служба по экологическому, технологическому и атомному надзору

Утверждено приказом Федеральной службы по экологическому, технологическому и атомному надзору от 14 июля 2010 г. № 606

ПОЛОЖЕНИЕ ОБ ОЦЕНКЕ ПОЖАРОВЗРЫВОБЕЗОПАСНОСТИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ РАДИОХИМИЧЕСКИХ ПРОИЗВОДСТВ

РБ-060-10

Введено в действие с 14 июля 2010 г.

Москва 2010

ПОЛОЖЕНИЕ ОБ ОЦЕНКЕ ПОЖАРОВЗРЫВОБЕЗОПАСНОСТИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ РАДИОХИМИЧЕСКИХ ПРОИЗВОДСТВ. РБ-060-10

Федеральная служба по экологическому, технологическому и атомному надзору Москва, 2010

Настоящее Положение об оценке пожаровзрывобезопасности технологических процессов радиохимических производств (далее – Положение) входит в число руководств по безопасности, носит рекомендательный характер и не является нормативным правовым актом.

Настоящее Положение содержит рекомендации по обеспечению пожаровзрывобезопасности, применительно к объектам ядерного топливного цикла, имеющим радиохимические производства, при их проектировании, сооружении, реконструкции и эксплуатации и к научноисследовательским организациям, в которых проводится радиохимическая переработка отработавшего ядерного топлива и облученных ядерных материалов.

Настоящее Положение распространяется на объекты ядерного топливного цикла, связанные с технологическими операциями радиохимических производств.

Выпускается впервые.*

 $^{^{*}}$ Разработан коллективом авторов в составе Е.Р. Назина, Г.М. Зачиняева, Е.В. Рябовой, А.В. Родина.

ПОЛОЖЕНИЕ ОБ ОЦЕНКЕ ПОЖАРОВЗРЫВОБЕЗОПАСНОСТИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ РАДИОХИМИЧЕСКИХ ПРОИЗВОДСТВ

В настоящем документе применяются следующие термины и определения:

- 1. **Взрыв в воздушной среде** локализованный в пространстве процесс быстрого перехода потенциальной энергии источника в кинетическую энергию окружающей среды в форме волны давления, колебаний грунта, летящих предметов и теплового излучения области энерговыделения.
- 2. **Дефлаграционный взрыв облаков газопаровоздушных смесей** энерговыделение в объеме облака при распространении экзотермической химической реакции с дозвуковой скоростью (взрывное горение).
- 3. Скорость газовыделения (W) количество газообразных продуктов, выделяющихся в единицу времени при разложении химических веществ или взаимодействии компонентов смесей химических веществ.
- 4. **Температура возникновения теплового взрыва (Т**взр) температура химического вещества (смеси химических веществ), при которой тепловыделение в зоне химической реакции начинает превышать потери тепла из нее и происходит саморазогрев реагирующей системы.
- 5. **Тепловой езрыв** экзотермическая самоускоряющаяся химическая реакция, протекающая с высокой скоростью и сопровождающаяся интенсивным тепло- и газовыделением.
- 6. **Термическая стабильность химических веществ и смесей** способность к сохранению исходного состава под действием тепловых нагрузок.
- 7. Удельный объем газообразных продуктов теплового взрыва ($V_{yд}$) объем парогазообразных продуктов, выделяющихся на единицу объема (массы) вещества (смеси) в результате теплового взрыва.

І. ОБЩИЕ ПОЛОЖЕНИЯ

- 1. Положение об оценке пожаровзрывобезопасности технологических процессов радиохимических производств (далее Положение) входит в число руководств по безопасности, носит рекомендательный характер и не является нормативным правовым актом.
- 2. Настоящее Положение содержит рекомендации Федеральной службы по экологическому, технологическому и атомному надзору по обеспечению пожаровзрывобезопасности (далее ПВБ) применительно к объектам ядерного топливного цикла (далее ЯТЦ), имеющим радиохимические производства (далее РХП), при их проектировании, сооружении, реконструкции и эксплуатации и к научно-исследовательским организациям, в которых проводится радиохимическая переработка отработавшего ядерного топлива и облученных ядерных материалов.
- 3. Настоящее Положение распространяется на объекты ЯТЦ, связанные с технологическими операциями РХП:
 - хранение отработавших тепловыделяющих сборок;
 - растворение металлсодержащего сырья;
 - фильтрование;
 - переработка методами жидкостной экстракции и сорбции;
 - подготовка исходных растворов, а также растворов, содержащих восстановители и окислители;
 - образование и применение газовоздушных систем;
 - использование осадительных процессов с последующей прокалкой осадков;
 - хранение отработавших растворов, перлитных суспензий, используемых в процессах передела;
 - упаривание высокоактивных и среднеактивных растворов.

II. ПОТЕНЦИАЛЬНО ПОЖАРОВЗРЫВООПАСНЫЕ ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ РАДИО-ХИМИЧЕСКИХ ПРОИЗВОДСТВ ПРЕДПРИЯТИЙ ЯДЕРНОГО ТОПЛИВНОГО ЦИКЛА

- 4. Технологические процессы РХП предприятий ЯТЦ (далее ПЯТЦ) являются потенциально пожаровзрывоопасными в случаях, если при их проведении:
- 1) образуются или используются горючие газы (водород, аммиак, метан, оксид углерода и др.);
- 2) используются горючие жидкости (экстрагенты, углеводородные разбавители и другие органические жидкости):
- 3) используются смеси восстановителей с азотнокислыми окислителями (смеси экстрагентов и органических сорбентов с азотной кислотой и нитратами; азотнокислые растворы, содержащие органические продукты и др.).

Примерный перечень потенциально пожаровзрывоопасных технологических процессов РХП ПЯТЦ приведен в приложении № 1 к настоящему Положению.

- 5. На основе данных об авариях, имевших место в практике работы РХП ПЯТЦ, и информации о пожаровзрывоопасных свойствах химических веществ и смесей, используемых в технологических процессах РХП ПЯТЦ, в качестве моделей аварий в Положении приняты:
 - 1) дефлаграционный взрыв облаков газопаровоздушных смесей;
 - 2) разрушение сосудов (резервуаров) под действием внутреннего давления.
- 6. В качестве объектов, содержащих потенциальные источники аварий, рекомендуется рассматривать:
- 1) промышленные аппараты (растворители, экстракторы, сорбционные колонны, емкости для хранения отходов, выпарные аппараты, денитраторы, фильтры и др.);
 - 2) системы вентиляции (общая, локальная), трубопроводы, газоходы;
 - 3) защитные камеры, боксы, рабочие помещения и каньоны, в которых находятся аппараты.

III. ХАРАКТЕРИСТИКИ ВЕЩЕСТВ И СМЕСЕЙ, НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ПОЖАРОВЗРЫВООПАСНОСТИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

- 7. В качестве исходных характеристик, определяющих пожаровзрывобезопасные условия проведения технологических процессов с потенциально опасными химическими веществами и смесями, необходимыми и достаточными рекомендуется считать:
- 1) для газовоздушных и газовых смесей величины нижних концентрационных пределов распространения пламени (ϕ_H) (для индивидуальных газов принимаются справочные величины ϕ_H ; способ расчета ϕ_H для смесей горючих газов приведен в п. 1 приложения № 2 к настоящему Положению):
- 2) для горючих жидкостей величины температуры вспышки ($T_{\text{всп}}$) и/или нижнего температурного предела распространения пламени ($T_{\text{н}}$) (определяются экспериментально или рассчитываются способом, изложенным в п. 3 приложения № 2 к настоящему Положению);
- 3) для смесей восстановителей с азотнокислыми окислителями скорость газовыделения (W), температура возникновения теплового взрыва $(T_{\text{взр}})$, $V_{\text{уд}}$ парогазообразных продуктов экзотермических процессов окисления (тепловых взрывов) (для экстракционных и сорбционных смесей РХП эти характеристики приведены в приложении № 2 к настоящему Положению).

IV. УСЛОВИЯ ВОЗНИКНОВЕНИЯ ВОСПЛАМЕНЕНИЯ ИЛИ ВЗРЫВА ПРИ ПРОВЕДЕНИИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ РАДИОХИМИЧЕСКИХ ПРОИЗВОДСТВ ПРЕДПРИЯТИЙ ЯДЕРНОГО ТОПЛИВНОГО ЦИКЛА

- 8. Для возникновения воспламенения или взрыва при проведении технологических процессов необходимо одновременное наличие минимум двух факторов, каждый из которых отдельно не является исходным событием. Перечень условий возникновения воспламенения и/или взрыва при проведении технологических процессов РХП приведен в приложении № 3 к настоящему Положению.
- 9. Причинами появления избыточного давления в аппаратах в подавляющем большинстве случаев являются окислительные процессы в смесях восстановителей (экстрагентов, сорбентов, органических продуктов и др.) с азотнокислыми окислителями (азотной кислотой, нитратами, оксидами азота), сопровождающиеся газовыделением, а также радиолиз органических продуктов и водных растворов. В зависимости от условий, окислительные процессы могут проходить при постоянной температуре с примерно постоянными скоростями газовыделения или с прогрессивным ростом температуры реагирующих смесей и скоростей газовыделения в режиме теплового взрыва.

V. РЕКОМЕНДАЦИИ ПО ОБЕСПЕЧЕНИЮ ПОЖАРОВЗРЫВОБЕЗОПАСНОСТИ ПРИ ПРОВЕДЕНИИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ РАДИОХИМИЧЕСКИХ ПРОИЗВОДСТВ ПРЕДПРИЯТИЙ ЯДЕРНОГО ТОПЛИВНОГО ЦИКЛА

- 10. Технические и организационные мероприятия по обеспечению ПВБ конкретных технологических процессов РХП рекомендуется разрабатывать на основе результатов анализа, включающего:
- 1) анализ всех стадий технологического процесса на предмет пожаровзрывоопасности и выявление потенциально опасных веществ и смесей:
- 2) расчетное или экспериментальное определение пожаровзрывоопасных характеристик обнаруженных потенциально опасных веществ и смесей;
- 3) выявление условий реализации потенциальной опасности (воспламенения газопаровоздушных смесей, теплового взрыва конденсированных веществ и смесей);

- 4) установление пределов безопасной эксплуатации (далее ПБЭ) и (или) условий безопасной эксплуатации (далее УБЭ);
 - 5) разработку мероприятий по обеспечению УБЭ;
- 6) корректировку мероприятий по обеспечению УБЭ на основании результатов промышленной «обкатки» технологического процесса;
- 7) вероятностный анализ безопасности с привлечением информации об условиях возникновения аварий;
 - 8) оценку последствий аварий с использованием соответствующих характеристик.
- 11. Рекомендуется провести независимую экспертную оценку организационно-технических мероприятий по обеспечению ПВБ технологических процессов.
- 12. Для обеспечения ПВБ технологических процессов РХП рекомендуется соблюдать следующие условия:
 - содержание горючих газов в газовых смесях не должно превышать величины ПБЭ; величина ПБЭ не должна превышать 50 % величины φ_н для горючего газа или смеси горючих газов с учетом динамики их выделения;
 - температура горючих жидкостей не должна превышать величины ПБЭ (величина ПБЭ принимается на 10 °C ниже величины $T_{\rm H}$, наименьшей температуры жидкости, при которой происходит воспламенение паровоздушных смесей);
 - пропускная способность сдувок аппаратов должна обеспечивать отвод выделяющихся газов в момент их максимального выделения;
 - время нахождения смесей экстрагентов, сорбентов и восстановителей в закрытых аппаратах должно быть обусловлено технологической необходимостью при контроле за температурой содержимого и давлением в аппарате:
 - наличие органических веществ сверх пределов растворимости в азотнокислых растворах, подаваемых на высокотемпературные операции (упаривание, ректификация HNO₃, получение плава уранилнитрата, денитрация), должно быть исключено;
 - нагревание в закрытых аппаратах азотнокислых растворов до температур выше 120 °C должно быть исключено;
 - хранение сорбентов в нитратной форме допускается при влажности не менее 50 %;
 - осушение органических сорбентов, содержащих нитратные группы, должно быть исключено
 - во избежание осушения сорбента за счет теплоты радиоактивного распада допустимые количества радионуклидов в сорбционных колоннах должны быть обоснованы теплофизическими расчетами;
 - содержание восстановителей при упаривании азотнокислых растворов должно быть ограничено такими величинами, чтобы в случае возникновения экзотермических процессов окисления восстановителей давление в аппарате не превысило допустимого;
 - высушивание смесей органических веществ (восстановителей) с нитратами с последующим нагреванием должно быть исключено;
 - при хранении растворов и суспензий не допускается осушение осадков.

13. В целях обеспечения всесторонней и качественной оценки ПВБ технологических процессов РХП в обосновывающие документы, представляемые эксплуатирующей организацией для получения лицензии на виды деятельности в области использования атомной энергии, а также в экспертное заключение о ПВБ технологических процессов рекомендуется включать положения, перечисленные в приложении № 4 к настоящему Положению.

Приложение № 1

к Положению об оценке пожаровзрывобезопасности технологических процессов радиохимических производств, утвержденному приказом Федеральной службы по экологическому, технологическому и атомному надзору

Перечень потенциально пожаровзрывоопасных технологических процессов радиохимических производств предприятий ядерного топливного цикла

Операция	Потенциальная опасность	
Растворение отработавшего ядерно- го топлива	Интенсивное газовыделение при наличии органических веществ в регенерированной азотной кислоте; выделение водорода	
Осветление растворов (фильтрование)	Выделение водорода; интенсивное газовыделение при окислении флокулянтов азотной кислотой; осушение содержимого фильтра и нагрев до $T_{\text{взр}}$ за счет тепла радиоактивного распада	
Отделение U и Pu от других актинидов и продуктов деления методом жидкостной экстракции	Выделение водорода; образование горючей смеси паров экстрагента с воздухом; создание избыточного давления в закрытом аппарате (или при недостаточной пропускной способности сдувок открытого аппарата) за счет окислительных процессов в смеси экстрагента и/или восстановителя с азотной кислотой; возникновение теплового взрыва в смеси экстрагента с азотной кислотой при достижении $T_{\text{взр}}$	
Получение плава уранилнитрата	Тепловой взрыв при содержании в упариваемом растворе экстрагента (или продуктов его превращения) сверх пределов растворимости	
Аффинаж Pu	Выделение водорода; создание избыточного давления в аппарате за счет газовыделения при окислении экстрагента азотной кислотой, в том числе и в результате теплового взрыва; образование и накопление горючей газо-воздушной смеси в сдувочных коллекторах	
Сорбционное извлечение продуктов деления (на примере Cs-137, Pm-147, Am-241 в виде диоксида)	Выделение водорода; создание избыточного давления в аппарате за счет интенсивного процесса газовыделения в азотнокислом растворе при окислении восстановителя; создание избыточного давления в аппарате за счет газовыделения при окислении сорбента азотной кислотой; тепловой взрыв при осушении органического сорбента в нитратной форме или из азотнокислого раствора и нагревании его до $T_{\rm взp}$	
Хранение высокоактивных жидких растворов, перлитных суспензий, отработавшего экстрагента	Выделение радиолитического водорода и метана; образование горючей смеси паров отработавшего экстрагента и продуктов его гидролиза и радиолиза с воздухом; тепловой взрыв при наличии в азотнокислом растворе экстрагента в виде отдельной фазы и нагревании его до $T_{\text{вэр}}$	
Упаривание растворов средней активности и высокоактивных растворов	Выделение водорода; тепловой взрыв при наличии в упариваемом растворе экстрагента или продуктов его превращения в виде отдельной фазы и нагревании до $T_{вар}$	
Остекловывание высокоактивных отходов	Образование способной к воспламенению газовой смеси с оксидом углерода (СО) при недостаточном окислении	

6

Операция	Потенциальная опасность	
	восстановителей азотнокислыми окислителями; создание избыточного давления в печи при попадании восстановителя в количестве, превышающем регламентное	
Денитрация плава уранилнитрата	Тепловой взрыв при наличии в плаве экстрагента или продуктов его превращения в виде отдельной фазы	
Приготовление раствора гидразин- нитрата	Создание избыточного давления в аппарате за счет интенсивного газовыделения при окислении гидразина азотной кислотой	
Упаривание азотнокислых растворов, содержащих восстановители	Создание избыточного давления в аппарате за счет интенсивного газовыделения при окислении восстановителей азотной кислотой	
Электрохимическое и каталитическое восстановление урана	Выделение водорода	
Использование гидразина в качестве восстановителя	Образование азотистоводородной кислоты и взрыво- опасных азидов; создание избыточного давления в аппарате за счет интен- сивного газовыделения при окислении гидразина азотной кислотой	

Приложение № 2

к Положению об оценке пожаровзрывобезопасности технологических процессов радиохимических производств, утвержденному приказом Федеральной службы по экологическому, технологическому и атомному надзору

Пожаровзрывоопасные характеристики веществ и смесей, используемых в технологических процессах радиохимических производств

1. Нижний концентрационный предел распространения пламени (ϕ_H) – минимальное содержание горючего газа (газов) в смеси с воздухом, при котором происходит воспламенение смеси. Величины ϕ_H для водорода, аммиака, оксида углерода и метана составляют соответственно 4,0; 13,0; 12,0 и 4,0 объемных процента.

Влияние температуры на величину фн оценивается по зависимости:

$$\phi_{_{\mathbf{H},T_2}} = \phi_{_{\mathbf{H},T_1}} \left(1 - \frac{T_2 - T_1}{1550 - T_1} \right),\tag{1}$$

гле

 $\phi_{\text{и.}T_2}$ – нижний концентрационный предел распространения пламени горючего газа при температуре T_2 , %об.;

 $\phi_{_{\mathrm{H},T_{1}}}$ — нижний концентрационный предел распространения пламени горючего газа при температуре T_{1} , %об.;

 T_1 , T_2 – температуры в К.

При наличии в газовой смеси нескольких горючих газов величина $\phi_{\scriptscriptstyle H}$ может быть рассчитана по формуле Ле-Шателье:

$$\phi_{_{\text{\tiny H,CM}}} = \frac{\sum_{i=1}^{k} \phi_{_{\ell_i}}}{\sum_{i=1}^{k} \phi_{_{\ell_i}}} \quad , \tag{2}$$

где

 $\phi_{k_{+}}$ – содержание *i*-го горючего в смеси горючих газов, %об.;

 $\phi_{_{\rm H_{\it i}}}$ – нижний концентрационный предел распространения пламени *i*-го горючего газа, % об.

Минимальная флегматизирующая концентрация ($\phi_{\phi n}$) — наименьшая концентрация флегматизатора в смеси с горючим и окислителем, при которой смесь становится неспособной к распространению пламени при любом соотношении компонентов. Для H_2 , NH_3 , CO и CH_4 имеются справочные данные по величинам ϕ_H при разбавлении азотом и диоксидом углерода. Влияние температуры оценивается по формуле:

$$\varphi_{\phi_{\pi},T_2} = \varphi_{\phi_{\pi},T_1} \left(1 + \frac{T_2 - T_1}{1400 - T_1} \right), \tag{3}$$

где

 $\phi_{\phi\pi,T_2}$ – минимальная флегматизирующая концентрация инертного компонента в смеси горючих газов при температуре T_2 , %об.;

 $\phi_{\phi\pi,T_1}$ – минимальная флегматизирующая концентрация инертного компонента в смеси горючих газов при температуре T_1 , %об.

В совокупности эти показатели позволяют решать практические задачи по оценке воспламеняемости газовых смесей и обеспечению безопасных условий работы с ними.

2. Объем воздуха (инертного газа) – $V_{\text{раз6}}$, необходимый для разбавления одного объема газовой смеси до ПБЭ, можно оценить по зависимости:

$$V_{\text{pas6}} = (\varphi_{\text{r}} - \Pi \text{G} 3)/\Pi \text{G} 3, \tag{4}$$

 ϕ_r – концентрация горючего газа (или смеси горючих газов) в данной смеси, %об.

3. Температурой вспышки ($T_{\rm всп}$) называется самая низкая температура вещества (горючей жидкости), при которой в условиях специальных испытаний над его поверхностью образуются пары и газы, способные вспыхивать в воздухе от постоянного источника зажигания.

Нижним температурным пределом распространения пламени ($T_{\rm H}$) называется температура вещества, при которой его насыщенные пары образуют в воздухе концентрации, равные $\phi_{\rm H}$.

Величину $T_{\text{всп}}$ смеси горючих жидкостей рассчитывают по формуле:

$$\sum x_{i} \cdot exp \left[\frac{\Delta H_{\text{BCR}\,i}}{R(T_{\text{BCR}\,i} + 273)} - \frac{\Delta H_{\text{BCR}\,i}}{R(T_{\text{BCR}\,i}^{\text{cM}} + 273)} \right] = 1,$$
(5)

где

 X_{i} — мольная доля *i*-го компонента в смеси (в жидкой фазе);

 $\Delta H_{\scriptscriptstyle \mathrm{wen}\,i}$ – мольная теплота испарения i-го компонента, кДж·моль $^{-1}$;

 $T_{\text{всп},i}$ – температура вспышки *i*-го компонента, °C;

 $T_{\scriptscriptstyle
m BCII}^{\scriptscriptstyle
m CM}$ – температура вспышки смеси, °C;

R – универсальная газовая постоянная.

Значение $\underline{\Delta H_{\text{ncn }i}}$ может быть рассчитано по интерполяционной формуле:

$$\frac{\Delta H_{\text{ucn}\,i}}{R} = -2918.6 + 19.6(T_{\text{кип}\,i} + 273),\tag{6}$$

где

 $T_{_{\mathrm{кип}\,i}}$ – температура кипения i-го компонента, °C.

По этой же формуле рассчитывается величина $T_{\rm H}$ смеси, если вместо $T_{\rm BCR}$ подставить величины $T_{\rm H}$ компонентов смеси.

Средняя квадратическая погрешность расчета по формуле (6) составляет 9 °C.

- 4. В открытом сосуде температура начала газовыделения ($T_{\rm Hr}$) для смесей трибутилфосфата (далее ТБФ) и его растворов в углеводородных разбавителях с азотной кислотой концентрации 12 моль/л составляет 80–90 °C, максимальная скорость газовыделения (W_{max}) для необлученных смесей 1,5 л/мин·л экстрагента, для облученных 4 л/мин·л экстрагента.
- 5. В открытых сосудах $T_{\rm HF}$ для смесей сорбентов с азотной кислотой концентрации 7 и 12 моль/л при наличии раствора между гранулами сорбента составляет, соответственно, 70 и 60 °C, W_{max} для необлученных смесей при температуре 100 °C 0,8–1,2 л/мин л сорбента, для облученных 2,3–2,5 л/мин л сорбента.
- 6. Для смесей ТБФ и его растворов в углеводородных разбавителях с азотной кислотой концентрации 3–12 моль/л величины $T_{\rm взp}$ составляют 125–140 °C для необлученных смесей и 110–120 °C для облученных смесей, $V_{\rm yg}$ парогазообразных продуктов после завершения теплового взрыва 1,5–2,0 м³/л экстрагента.
 - 7. Величины $T_{\rm B3D}$ смесей экстрагента (ТБФ) с уранилнитратом составляют 170–180 °C.
- 8. Аниониты в нитратной форме или с нитратным комплексом металлов в сухом состоянии воспламеняются при температуре 200–210 °C вне зависимости от герметичности сосуда.
- 9. Смеси анионитов с азотной кислотой после удаления водной фазы между гранулами сорбента способны к воспламенению при нагревании до температуры 130-150 °C (необлученные смеси) и 115-120 °C (облученные смеси), при этом герметичность сосуда не имеет значения. $V_{\rm уд}$ парогазообразных продуктов теплового взрыва анионита в нитратной форме составляет 0,15 м³ на литр воздушно-сухого сорбента, для смесей его с 6-12 моль/л азотной кислотой от 1,2 до 1,7 м³ на литр воздушно-сухого сорбента.

Приложение № 3 к Положению об оценке пожаровзрывобезопасности технологических процессов радиохимических производств, утвержденному приказом Федеральной службы по экологическому, технологическому и атомному надзору

Условия возникновения воспламенения и/или взрыва при проведении технологических процессов радиохимических производств

Вещество или смесь	Потенциальная опасность	Условия возникновения воспламенения и/или взрыва
Смесь горючих газов с воздухом	Воспламенение смеси	Смесь по составу находится в области воспламенения при наличии инициирующего импульса достаточной мощности
Горючая жидкость	Воспламенение паро- воздушной смеси	Температура горючей жидкости выше $T_{\text{всп}}$ или T_{H} при наличии инициирующего импульса достаточной мощности
Смесь экстрагента с азотной кислотой в открытом аппарате	Создание в аппарате избыточного давления	W за счет химической реакции выше скорости отвода газов сдувкой аппарата
Смесь экстрагента с азотной кислотой в за- крытом аппарате	Создание в аппарате избыточного давления	Выделение газов при температуре смесей ниже $T_{\rm взp}$
	Тепловой взрыв	Нагревание смеси до $T_{\mbox{\tiny B3p}}$
Смесь экстрагента с уранилнитратом в открытом и закрытом аппарате	Тепловой взрыв	Высыхание смеси и нагрев до $T_{\mbox{\tiny B3p}}$
Органический сорбент в нитратной форме или с нитратным комплексом металла в открытом и закрытом аппарате	Тепловой взрыв	Высыхание смеси и нагрев до $T_{\mbox{\tiny B3p}}$
Смесь органического сорбента с азотной ки- слотой в открытом аппа- рате	Создание в аппарате избыточного давления	W за счет химической реакции выше скорости отвода газов сдувкой аппарата
	Тепловой взрыв	Высыхание смеси и нагрев до $T_{\mbox{\tiny B3p}}$
Смесь органического сорбента с азотной кислотой в закрытом аппарате	Создание в аппарате избыточного давления	Выделение газов за счет химической реакции при температуре смесей ниже $T_{\mbox{\scriptsize BSp}}$
	Тепловой взрыв	Высыхание смесей и нагрев до $T_{\mbox{\tiny B3p}}$
Азотнокислый раствор, содержащий восстановители, в открытом аппарате	Создание в аппарате избыточного давления	W за счет химической реакции выше скорости отвода газов сдувкой аппарата
Азотнокислый ра-створ, содержащий восстановители, в закрытом аппарате	Быстрое нарастание давления в аппарате вплоть до разрыва аппарата	Интенсивное газовыделение за счет эк- зотермических процессов окисления вос- становителей
Смесь органических веществ (восстановителей) с нитратами в открытом и закрытом сосудах	Тепловой взрыв	Высыхание смесей и нагрев до $T_{\mbox{\tiny B3p}}$

Приложение № 4

к Положению об оценке пожаровзрывобезопасности технологических процессов радиохимических производств, утвержденному приказом Федеральной службы по экологическому, технологическому и атомному надзору

Положения, которые рекомендуется включать в обосновывающие документы, представляемые эксплуатирующей организацией для получения лицензии на виды деятельности в области использования атомной энергии, а также в экспертное заключение о пожаровзрывобезопасности технологических процессов

1. Состав и содержание документации о технологическом процессе

- 1.1. Рекомендуется определить суть процесса (для каких целей предназначен).
- 1.2. Рекомендуется предоставить сведения об используемых и образующихся в процессе химических веществах или смесях и их количествах.
- 1.3. Рекомендуется приводить информацию о пожаровзрывоопасных характеристиках потенциально опасных веществ и смесей, перечень которых приведен в приложении № 3 к Положению об оценке пожаровзрывобезопасности технологических процессов радиохимических производств, и об условиях реализации потенциальной опасности в форме горения, создания избыточного давления или взрыва.
- 1.4. Рекомендуется указать скорость выделения радиолитического водорода и содержание горючих газов в газовоздушных смесях.
- 1.5. Рекомендуется привести аппаратурную схему процесса (порядок работы, содержимое, связь с другими аппаратами).
- 1.6. Рекомендуется привести характеристики аппаратов, в которых находятся химические вещества или смеси (объем, степень заполнения, наличие контрольно-измерительных приборов и места их расположения, герметичность, наличие сдувок, систем «нагрев-охлаждение», коммуникации приема и выдачи продуктов) и их связь с другими аппаратами.
- 1.7. Рекомендуется предоставлять информацию об основных параметрах процесса (концентрация компонентов и наличие входного контроля за ними, температура, давление, наличие катализаторов и т.д.).
- 1.8. Рекомендуется указать максимальные отклонения параметров процессов от регламентных величин.
 - 1.9. Рекомендуется привести информацию о ПБЭ и (или) УБЭ.
- 1.10. Рекомендуется предоставить сведения о проводимых организационно- технических мероприятиях по обеспечению УБЭ.
- 1.11. Рекомендуется привести перечень документов, обосновывающих ПВБ процесса (заключение о ПВБ, рекомендации о безопасных условиях проведения процессов, справки о результатах анализов и/или испытаний свойств потенциально опасных веществ и их смесей, отчеты о результатах расчетов и/или экспериментов, отчеты по научно-исследовательским работам, выполненные эксплуатирующей организацией и/или другими организациями).
- 1.12. Рекомендуется привести перечень имевших место аварийных ситуаций и/или отклонений при проведении данного процесса.

2. Состав и содержание экспертного заключения о пожаровзрывобезопасности технологических процессов радиохимических производств

- 2.1. В преамбулу заключения рекомендуется включить описание процесса, соответствующее приведенному в обосновывающих документах, представленных эксплуатирующей организацией
- 2.2. На основании анализа представленной информации рекомендуется указать потенциально опасные вещества и их смеси, технологические операции, в которых они используются и/или образуются.
- 2.3. Информация о результатах расчетного и/или экспериментального определения пожаровзрывоопасных свойств потенциально опасных веществ, их смесей, об условиях, при которых реализуется потенциальная опасность в форме горения, создания избыточного давления или взрыва может быть основой для оценки экспертной организацией надежности и достаточности организационно-технических мероприятий по обеспечению ПБЭ (если они установлены) и УБЭ. При недостаточности этих мероприятий могут быть выданы соответствующие рекомендации по обеспечению ПБЭ и УБЭ.
- 2.4. Отдельной строкой рекомендуется формулировать вывод о соответствии (или несоответствии) условий проведения технологического процесса УБЭ.