Утверждено приказом Федеральной службы по экологическому, технологическому и атомному надзору от 3 декабря 2019 г. № 459

Руководство по безопасности при использовании атомной энергии

Рекомендации по обеспечению пожаровзрывобезопасности технологических процессов с применением пирофорных материалов на объектах ядерного топливного цикла. PБ-161-19

Введено в действие с 3 декабря 2019 г.

Рекомендации по обеспечению пожаровзрывобезопасности технологических процессов с применением пирофорных материалов на объектах ядерного топливного цикла. РБ-161-19.

Федеральная служба по экологическому, технологическому и атомному надзору, Москва, 2019

Руководство по безопасности при использовании атомной энергии «Рекомендации по обеспечению пожаровзрывобезопасности технологических процессов с применением пирофорных материалов на объектах ядерного топливного цикла» (РБ-161-19) разработано в соответствии со статьей 6 Федерального закона от 21 ноября 1995 г. № 170-ФЗ «Об использовании атомной энергии» в целях содействия соблюдению требований пунктов 6.7.7.1 и 6.7.7.3 федеральных норм и правил в области использования атомной энергии «Общие положения обеспечения безопасности объектов ядерного топливного цикла (ОПБ ОЯТЦ)» (НП-016-05), утвержденных постановлением Федеральной службы по экологическому, технологическому и атомному надзору от 2 декабря 2005 г. № 11.

Содержит рекомендации Федеральной службы по экологическому, технологическому и атомному надзору по обеспечению пожаровзрывобезопасности технологических процессов с применением пирофорных материалов на объектах ядерного топливного цикла при их проектировании, сооружении, эксплуатации и выводе из эксплуатации.

Распространяется на объектах ядерного топливного цикла при их проектировании, сооружении, эксплуатации и выводе из эксплуатации, на которых осуществляют технологические процессы с применением пирофорных материалов.

Выпускается впервые.

Разработано коллективом авторов в составе: Понизов А. В., Родин А. В., Соколов И. П., Емельянов А. С. (ФБУ «НТЦ ЯРБ»).

При разработке учтены замечания и предложения 6 Управление Ростехнадзора, ФГУП «РА-ДОН», АО «ТВЭЛ», АО «ВНИПИпромтехнологии», АО «СХК», АО ИК «АСЭ», АО «АТОМПРОЕКТ», ФГУП «РосРАО», АО «Концерн Росэнергоатом», ФГУП «НО РАО», ФГУП «ПО» Маяк», АО «ВНИИАЭС», ИБРАЭ РАН, ВМТУ, СЕМТУ.

Оглавление

 I. Назначение и область применения	.6 .7 .8
пирофорных материалов III. Рекомендации по обеспечению безопасных условий при обращении с пирофорными материалами	.7 .7 .8
материалами	.7 .8
Рекомендации по предотвращению контакта пирофорных материалов с воздухом и	.8
реакционноспособными веществами	
Рекомендации по уменьшению количества применяемого пирофорного материала	
Рекомендации по предотвращению источников зажигания и саморазогрева пирофорного материала	٠.
IV. Рекомендации по обоснованию безопасных условий при обращении с пирофорными материалами	10
V. Рекомендации по установлению показателей пожаровзрывоопасности пирофорных материалов	11
VI. Рекомендации по установлению критериев безопасности при обращении с пирофорными материалами	
VII. Рекомендации по сбору, систематизации и хранению данных по условиям самовоспламенения пирофорных материалов1	13
Приложение № 11	14
Термины и определения1	14
Приложение № 21	16
Перечень пирофорных материалов, применяемых в технологических процессах объектов ядерного топливного цикла	16
Приложение № 31	17
Показатели и характеристики пожаровзрывоопасности пирофорных материалов, применяемых в технологических процессах объектов использования ядерного топливного цикла	
Приложение № 4	22
Перечень критериев оценки пожаровзрывоопасности пирофорных материалов, применяемых в технологических процессах объектов ядерного топливного цикла	22
Приложение № 5	24
Рекомендуемые методы контроля за показателями пожаровзрывоопасности пирофорных материалов, применяемых в технологических процессах объектов ядерного топливного	

Приложение № 625	
Перечень нормативно правовых и правовых актов, рекомендуемых для использования при	
обеспечении пожаровзрывобезопасности технологических процессов с применением	
пирофорных материалов на объектах ядерного топливного цикла 25	

І. Назначение и область применения

- 1. Руководство по безопасности при использовании атомной энергии «Рекомендации по обеспечению пожаровзрывобезопасности технологических процессов с применением пирофорных материалов на объектах ядерного топливного цикла» (РБ-161-19) (далее Руководство по безопасности) разработано в соответствии со статьей 6 Федерального закона от 21 ноября 1995 г. № 170-ФЗ «Об использовании атомной энергии» в целях содействия соблюдению требований пунктов 6.7.7.1 и 6.7.7.3 федеральных норм и правил в области использования атомной энергии «Общие положения обеспечения безопасности объектов ядерного топливного цикла (ОПБ ОЯТЦ)» (НП-016-05), утвержденных постановлением Федеральной службы по экологическому, технологическому и атомному надзору от 2 декабря 2005 г. № 11.
- 2. Настоящее Руководство по безопасности содержит рекомендации Федеральной службы по экологическому, технологическому и атомному надзору по обеспечению пожаровзрывобезопасности технологических процессов с применением пирофорных материалов (далее ПМ) на объектах ядерного топливного цикла (далее ОЯТЦ) при их проектировании, сооружении, эксплуатации и выводе из эксплуатации.
- 3. Действие настоящего Руководства по безопасности распространяется на действующие, сооружаемые, проектируемые и выводимые из эксплуатации ОЯТЦ, на которых осуществляют технологические процессы с применением ПМ.
- 4. Рекомендации настоящего Руководства по безопасности предназначены для применения при формировании требований эксплуатирующей организации к разработке технологических процессов с участием ПМ для ОЯТЦ.
- 5. Термины и определения, использованные в настоящем Руководстве по безопасности, приведены в приложении № 1. Перечень ПМ, применяемых в технологических процессах ОЯТЦ, в приложении № 2. Показатели и характеристики пожаровзрывоопасности ПМ, применяемых в технологических процессах ОЯТЦ, в приложении № 3. Перечень критериев оценки пожаровзрывоопасности ПМ, применяемых в технологических процессах ОЯТЦ, в приложении № 4. Рекомендуемые методы контроля за показателями пожаровзрывоопасности ПМ, применяемых в технологических процессах ОЯТЦ, в приложении № 5. Перечень нормативных документов, рекомендуемых для использования при обеспечении пожаровзрывобезопасности технологических процессов с применением ПМ на ОЯТЦ, в приложении № 6.

II. Рекомендации по контролю за фракционным составом и удельной поверхностью пирофорных материалов

- 6. С целью осуществления контроля за обеспечением непревышения температуры самовоспламенения ПМ при уменьшении размера его частиц рекомендуется:
 - в проекте ОЯТЦ, на которых осуществляют технологические процессы с участием ПМ, предусматривать наличие систем контроля за фракционным составом и удельной поверхностью ПМ;
 - при разработке технологического процесса с участием ПМ определять изменение их фракционного состава и удельной поверхности при изменении условий осуществления технологического процесса и ограничивать измельчение материала.
- 7. Контроль за фракционным составом и удельной поверхностью ПМ рекомендуется осуществлять перед и после проведения технологического процесса с их участием, а также при определении наличия (выхода) ПМ в помещении, в котором проводится технологический процесс, трубопроводах, системе вентиляции, фильтрах.
- 8. При выборе способа получения ПМ рекомендуется отдавать предпочтение способу, в соответствии с которым образуются частицы ПМ с наименее реакционноспособными поверхностями частиц (сфероидальной формы).
- 9. При осуществлении технологического процесса с участием ПМ рекомендуется снижать их общую удельную поверхность за счет разбавления непирофорными частицами этого материала.
- 10. При хранении ПМ рекомендуется снижать его общую удельную поверхность посредством его безопасного компактирования.

III. Рекомендации по обеспечению безопасных условий при обращении с пирофорными материалами

Рекомендации по предотвращению контакта пирофорных материалов с воздухом и реакционноспособными веществами

- 11. Рекомендуется исключать контакт ПМ с воздухом или ограничивать время такого контакта для предотвращения самовоспламенения ПМ на воздухе.
- 12. Для исключения достижения концентрационного предела распространения пламени рекомендуется ограничивать или исключать распыление аэрогеля ПМ потоком воздуха.
- 13. Обращение с ПМ рекомендуется осуществлять в инертной среде для исключения достижения концентрационного предела распространения пламени или минимальной флегматизирующей концентрации флегматизатора.
- 14. Рекомендуется исключать контакт ПМ с энергично взаимодействующими с ним веществами (гидрида урана с хлорорганическими соединениями, урана с диоксидом углерода), способными вызывать самовоспламенение и инициировать взрыв.
- 15. Рекомендуется не допускать попадание в ПМ другого ПМ, способного энергично взаимодействовать с компонентами технологической среды в режиме горения или взрыва (предотвращать попадание гидрида урана даже в виде примеси в количестве более 0,2 % в нитрид урана при наличии в технологической среде хлорорганических соединений).
- 16. Рекомендуется осуществлять контроль за содержанием в ПМ другого ПМ, способного энергично взаимодействовать с компонентами технологической среды в режиме горения или взрыва (осуществлять контроль за содержанием гидрида урана в нитриде урана, получаемом из гидрида урана).
- 17. Рекомендуется при обращении с пирофорным нитридом урана совместно с хлорорганическими соединениями не использовать нитрид урана, полученный из гидрида урана, для исключения взаимодействия гидрида урана с хлорорганическими соединениями в режиме горения и взрыва.
- 18. Рекомендуется при получении нитрида урана из гидрида урана установить гарантированное безопасное время для завершения процесса с целью снижения содержания гидрида урана в нитриде урана и исключения взаимодействия примеси гидрида урана в нитриде урана с хлорорганическими соединениями в режиме горения и взрыва.
- 19. Рекомендуется при обращении с нитридом урана, полученном из гидрида урана, исключить возможность его контактирования с хлорорганическими соединениями в случае отсутствия данных о содержании гидрида урана в нитриде урана.
- 20. Рекомендуется принимать меры по исключению возможности разгерметизации контейнера, содержащего ПМ, при его транспортировании.

Рекомендации по уменьшению количества применяемого пирофорного материала

- 21. С целью уменьшения потенциальной пожаровзрывоопасности технологического процесса ОЯТЦ рекомендуется:
 - ограничивать количество и/или концентрацию используемого ПМ в составе технологической среды до минимально необходимого значения;
 - ограничивать содержание аэрогеля и аэровзвеси ПМ в производственном помещении посредством систематической уборки помещения;
 - обеспечить контроль герметичности оборудования для сведения к минимуму выхода ПМ из камер в помещение.
- 22. Рекомендуется снижать концентрацию в ПМ другого ПМ, способного энергично взаимодействовать с компонентами технологической среды в режиме горения или взрыва (снижать концентрацию гидрида урана в нитриде урана, получаемого из гидрида урана).
- 23. Рекомендуется не допускать скопления аэрогеля ПМ на полу, оборудовании и инструменте.

Рекомендации по предотвращению источников зажигания и саморазогрева пирофорного материала

- 24. При хранении ПМ рекомендуется исключать воздействие на него источников тепла.
- 25. Работы с ПМ, предназначенными для использования при комнатной температуре, рекомендуется проводить вдали от горячих печей, накаленных предметов и возможных источников искр.
- 26. С целью снижения воздействия статического электричества при обращении с ПМ рекомендуется:
 - при отделке помещений и конструкций технологических линий не допускать применения материалов, способных накапливать статическое электричество;
 - предотвращать накопление в помещении (и на поверхности под ПМ) статического электричества;
 - не допускать дефектов (трещин, раковин) на рабочей поверхности аппаратуры, соприкасающейся с ПМ;
 - применять инструмент из латуни и алюминия;
 - не допускать использования органического стекла или другого материала, аккумулирующего статическое электричество.
- 27. При обращении с ПМ для снижения локального саморазогрева рекомендуется ограничивать образование в нем напряжений (трещин), в том числе посредством установления предельных значений скоростей, давлений, температур при перемещении ПМ.
- 28. При обращении с ПМ рекомендуется не допускать разогрева потенциальных мест трения частиц ПМ до температуры самовоспламенения.

29. Рекомендуется, чтобы в производственных помещениях, в которых осуществляются технологические процессы с участием ПМ, и в помещениях для хранения ПМ работники (персонал) находились в обуви без металлических гвоздей, в одежде из ткани, исключающей накопление статического электричества.

IV. Рекомендации по обоснованию безопасных условий при обращении с пирофорными материалами

- 30. В отчете по обоснованию безопасности (далее ООБ) рекомендуется приводить следующие характеристики применяемых ПМ: размер частиц, их удельную поверхность, температуру самовоспламенения, концентрационные пределы распространения пламени.
- 31. Рекомендуется в ООБ привести обоснование безопасных условий при обращении с ПМ в соответствии с критериями оценки пожаровзрывоопасности ПМ, применяемых в технологических процессах ОЯТЦ, примерный перечень которых приведен в приложении № 4 к настоящему Руководству по безопасности.
- 32. При отсутствии необходимых данных для ПМ рекомендуется использовать обоснование безопасных условий, установленных для более пожаровзрывоопасного ПМ.

V. Рекомендации по установлению показателей пожаровзрывоопасности пирофорных материалов

- 33. При установлении показателей пожаровзрывоопасности ПМ рекомендуется определять функциональные зависимости параметров, относящиеся к границе области самовоспламенения ПМ.
- 34. Для оценки границ самовоспламенения ПМ рекомендуется использовать теоретические зависимости температуры самовоспламенения от размера частиц и зависимости концентрационных пределов распространения пламени от температуры.
- 35. При экспериментальном установлении показателей пожаровзрывоопасности ПМ рекомендуется использовать меры по обеспечению взрывозащиты.

VI. Рекомендации по установлению критериев безопасности при обращении с пирофорными материалами

36. Критерии безопасности при обращении с ПМ рекомендуется устанавливать в соответствии с критериями оценки пожаровзрывоопасности ПМ, применяемых в технологических процессах ОЯТЦ, примерный перечень которых приведен в приложении № 4 к настоящему Руководству по безопасности.

VII. Рекомендации по сбору, систематизации и хранению данных по условиям самовоспламенения пирофорных материалов

37. Для строящихся и проектируемых ОЯТЦ эксплуатирующей организации рекомендуется организовать систему сбора, обработки, систематизации, анализа и хранения информации по показателям пожаровзрывоопасности ПМ, применяемых и образующихся на ОЯТЦ.

к руководству по безопасности при использовании атомной энергии «Рекомендации по обеспечению пожаровзрывобезопасности технологических процессов с применением пирофорных материалов на объектах ядерного топливного цикла», утвержденному приказом Федеральной службы по экологическому, технологическому и атомному надзору от 3 декабря 2019 г. № 459.

Термины и определения

В целях настоящего Руководства по безопасности используются следующие термины и определения:

Пирофорный материал — материал, способный самовоспламеняться при контакте с воздухом.

Аэрогель твердого пирофорного материала — конгломерат твердых частиц ПМ на поверхности оборудования и производственного помещения.

Аэровзвесь твердого пирофорного материала — совокупность отдельных твердых частиц пирофорного материала, распределенных в конкретном объеме газовой среды.

Горючие (сгораемые) вещества и материалы — вещества и материалы, способные самовозгораться, а также возгораться от источника зажигания и самостоятельно гореть после его удаления.

Максимальное давление взрыва — наибольшее давление, возникающее при дефлаграционном взрыве газо-, паро- или пылевоздушной смеси в замкнутом сосуде при начальном давлении смеси 101,3 кПа.

Минимальное взрывоопасное содержание кислорода — концентрация кислорода в горючей смеси, ниже которой воспламенение и горение смеси становится невозможным при любой концентрации горючего в смеси, разбавленной данным флегматизатором.

Минимальная флегматизирующая концентрация флегматизатора— наименьшая концентрация флегматизатора в смеси с горючим и окислительной средой, при которой смесь становится неспособной к распространению пламени при любом соотношении горючего и окислительной среды.

Минимальная энергия зажигания — наименьшее значение энергии электрического разряда, способной воспламенить наиболее легковоспламеняющуюся смесь газа, пара или пыли с воздухом.

Нижний концентрационный предел распространения пламени — минимальное содержание горючего в смеси «горючее вещество — окислительная среда», при котором возможно распространение пламени по смеси на любое расстояние от источника зажигания.

Скорость нарастания давления при взрыве — производная давления взрыва по времени на восходящем участке зависимости давления взрыва газо-, паро- или пылевоздушной смеси в замкнутом сосуде от времени.

Температура самовоспламенения — самая низкая температура вещества, при которой в условиях специальных испытаний происходит резкое увеличение скорости экзотермических реакций, заканчивающихся пламенным горением.

Условия самовоспламенения — сочетание достигаемых значений технологических параметров, приводящее к самовоспламенению горючего вещества или материала.

к руководству по безопасности при использовании атомной энергии «Рекомендации по обеспечению пожаровзрывобезопасности технологических процессов с применением пирофорных материалов на объектах ядерного топливного цикла», утвержденному приказом Федеральной службы по экологическому, технологическому и атомному надзору от 3 декабря 2019 г. № 459.

Перечень пирофорных материалов, применяемых в технологических процессах объектов ядерного топливного цикла

При обращении с ядерным топливом и оболочками твэлов в качестве промежуточных и примесных веществ на ОЯТЦ применяются и образуются следующие ПМ:

- мелкодисперсный металлический уран (U);
- мелкодисперсный диоксид урана (UO₂);
- мелкодисперсный гидрид урана (UH₃);
- мелкодисперсный мононитрид урана (UN);
- мелкодисперсный монокарбид урана (UC);
- мелкодисперсный металлический плутоний (Pu);
- мелкодисперсный полуторный оксид плутония (Pu₂O₃);
- мелкодисперсный металлический цирконий (Zr);
- губка металлического циркония (Zr);
- мелкодисперсный гидрид циркония (ZrH₂);
- мелкодисперсный мононитрид плутония (PuN);
- мелкодисперсный смешанный нитрид урана и плутония (UN-PuN).

к руководству по безопасности при использовании атомной энергии «Рекомендации по обеспечению пожаровзрывобезопасности технологических процессов с применением пирофорных материалов на объектах ядерного топливного цикла», утвержденному приказом Федеральной службы по экологическому, технологическому и атомному надзору от 3 декабря 2019 г. № 459.

Показатели и характеристики пожаровзрывоопасности пирофорных материалов, применяемых в технологических процессах объектов использования ядерного топливного цикла

Таблица 1. Значение максимального давления взрыва (Pmax) и скорости нарастания давления при взрыве (dP/dt) для ПМ с размером частиц d

ПМ	d, мкм	Pmax, кПа	dP/dt, MΠa/c
U	74	480	35
UH₃	< 74	520	63
Zr	< 74	630	91
ZrH ₂	< 74	630	77

Таблица 2. Значения нижнего концентрационного предела распространения пламени (НКПРП) и минимального взрывоопасного содержания кислорода (МВСК) для ПМ с размером частиц d

ПМ	d, мкм	НКПРП, г/м³	МВСК, % об.
U	74	60	1,5 (N ₂) 2,5 (He) 2,0 (Ar) 0 (CO ₂)
UH ₃	< 74	60	2
Zr	< 74	40 – 64	4
ZrH ₂	< 74	85	6

Таблица 3. Значения температуры самовоспламенения (Tc) и минимальной энергии зажигания (Eз) для ПМ с размером частиц d

ПМ	d, мкм	Tc,°C	Е₃, мДж
U-AΓ*	74	100	
U-AB**	74	2	45
UO ₂	0,05	0	
UO ₂	0,4	150	
UN	< 20	20	
UN	2 – 12	20	
UH₃-AΓ*	< 74	20	
UH ₃ -AB**	< 74	20	5
Zr-AΓ*	< 74	190	

Zr-AB**	< 74	20	5
ZrH ₂ -ΑΓ*	< 74	270	
ZrH ₂ -AB**	< 74	350	60

АГ* — аэрогель

AB** — аэровзвесь

Таблица 4. Характеристики пожаровзрывоопасности ПМ

ПМ	Характеристика пожаровзрывоопасности
U	Пирофорными свойствами обладают частицы металлического урана несфероид-
	ной формы, получаемые в результате восстановления его оксидов. При отношении
	поверхности к объему меньше или равным 1 температура воспламенения состав-
	ляет около 360°C. Для значений больше единицы температура понижается при-
	мерно до 245°C.
	При переработке урановых отходов в процессе обезжиривания и травления возго-
	рается стружка размером менее 0,4 мм.
	Самовозгорание урана возможно в вакууме, под слоем воды и даже в атмосфере
	влажного аргона. Механическая нагрузка повышает склонность урана к самовозго-
	ранию.
	Компактный уран способен самовозгораться и взрываться при контакте с сухим
	льдом при комнатной температуре.
	Возможно самопроизвольное воспламенение порошка урана в диоксиде углерода.
	Уран в виде стружки сгорает в оксиде азота при 400–500°C
UO ₂	На воздухе порошок UO₂ окисляется при комнатной температуре. Скорость окисле-
	ния зависит от размера частиц и от характера поверхности, подвергающейся окис-
	лению
UN	Температура воспламенения UN в сухом кислороде может колебаться от комнат-
	ной температуры для мелкозернистых порошков до примерно 300°C для спечен-
	ных изделий. Свежеприготовленный порошок UN с удельной поверхностью
	0,3 м²/г мгновенно загорается при комнатной температуре в кислороде, если дав-
	ление последнего выше 3 мм рт. ст. Самовоспламенение является следствием ло-
	кального нагрева внешней поверхности частиц порошка. Если же давление кисло-
	рода ниже указанного, то происходит медленное окисление UN с двумя различи-
	мыми стадиями без выделения азота.
	UN обладает пирофорными свойствами при размерах частиц менее 20 мкм.
	Тонкодисперсные порошки UN с размерами частиц 2—12 мкм пирофорны и на воз-
	духе при комнатной температуре способны самовозгораться. Нитрид урана в виде
	тонкого порошка легко воспламеняется в кислороде, и при размере частиц 70 мкм
	с UN следует работать в инертной атмосфере.
	Измельчение UN производят в атмосфере аргона высокой чистоты, содержащего
	не более 0,001 масс. % кислорода, во избежание окисления нитрида. По сравне-
	нию с порошками карбидного уран-плутониевого топлива порошки нитридного
	топлива менее пирофорны и с ними можно работать в атмосфере аргона, азота
	или гелия коммерческой чистоты
UN-PuN	Частицы смешанного нитрида уран-плутония (СНУП) обладают пирофорными свой-
	ствами при концентрации кислорода более 10 % об. Окисление порошкообразного
	СНУП состава $U_{0,9}$ Pu _{1,0} N в газо-воздушной среде с содержанием кислорода 3 % об.
	возможно при нагреве материала до 300°C.
	При распылении аэровзвеси частиц UN и СНУП в воздушную атмосферу (21 % кис-
	лорода) происходит самопроизвольное окисление материала с выделением тепла
PuN	Порошковый PuN реагирует с O₂ при 200°С и самовоспламеняется при 280−300°С.

ПМ	Характеристика пожаровзрывоопасности
	Во влажном О₂ скорость окисления увеличивается. На воздухе при комнатной тем-
	пературе порошок PuN превращается в PuO ₂ за 3 дня
UH₃	Гидрид урана является очень активным соединением. Он пирофорен и требует
	осторожного обращения.
	Гидрид урана реагирует со многими газами. С кислородом и с воздухом он соеди-
	няется очень бурно с образованием воды и U₃O ₈ . Азот и двуокись углерода начи-
	нают реагировать с гидридом урана при температуре 200–225°C. С газообразными
	галоидоводородными соединениями гидрид урана взаимодействует с образованием четырехвалентных галоидных солей.
	Гидрид урана является сильным восстановителем. При взаимодействии больших
	количеств этого соединения с водой происходит бурная экзотермическая реакция
	с образованием водорода и UO ₂ . Если же погрузить небольшие количества гид-
	рида урана в воду, то реакция идет очень медленно. Аналогично гидрид взаимо-
	действует с кислотами, не обладающими окислительными свойствами.
	Азотная кислота реагирует с гидридом урана довольно бурно с образованием ура-
	нилнитрата; в некоторых случаях реакция сопровождается воспламенением. Ще-
	лочи очень слабо или совершенно не взаимодействуют с гидридом урана. Бензол,
	толуол, спирт, ацетон и другие органические растворители, не содержащие галои-
	дов, не реагируют с гидридом урана.
	Органические растворители, содержащие галоиды, представляют большую взрыв-
	ную опасность при контакте с гидридом урана
UC, USi	Карбиды урана пирофорны, при растирании легко загораются, давая сноп искр. На
	воздухе карбиды урана интенсивно окисляются при 400°С до U ₃ O ₈ и CO ₂ . При ком-
	натной температуре на воздухе они разлагаются.
D	Порошок силицидов урана весьма пирофорен
Pu	При повышенных температурах плутоний проявляет автотермическую реакцию, самовоспламеняясь на воздухе, когда температура достигает 500°C.
	Металлический плутоний с низкой удельной площадью поверхности самовоспла-
	меняется при температуре выше 500°С, а металл с большой удельной площадью
	поверхности (стружка, порошок) самовоспламеняется на воздухе при температуре
	150–200°C.
	Коррозия металлического плутония во влажном воздухе проходит в 200 раз быст-
	рее, чем в сухом воздухе при комнатной температуре, и на пять порядков быстрее при 100°C.
	В присутствии газообразной или жидкой воды образуется сверхстехиометриче-
	ского состава оксид плутония PuO_{2+x} . Наибольшее значение x равно 0,26. В про-
	цессе быстрого окисления в присутствии адсорбированной воды на границе газ -
	твердое тело образуется водород и более высокий оксид. Во влажном воздухе об-
	разовавшийся водород соединяется с адсорбированным в результате диссоциации
	атомарным кислородом, снова образуя на поверхности воду. Катализируемый во-
	дой цикл диссоциации и синтеза воды происходит одновременно с тем, как Рu и
	O_2 превращаются в оксид в реакции металл—вода, которая характеризуется боль-
	шой скоростью.
	Плутоний имеет исключительную пирофорность при нагреве до 470–520°C. Во влажной среде на поверхности плутония образуются гидриды переменного со-
	става. Реагируя с кислородом, плутоний самовоспламеняется даже при комнатной
	температуре. В результате окисления плутоний расширяется на 70 % и может по-
	вредить содержащий его контейнер. При температуре 135°С плутоний самовоспла-
	меняется благодаря реакции с кислородом, а если его поместить в атмосферу тет-
	рахлорметана, то он взрывается
	ражноринетана, то отгозровается

ПМ	Характеристика пожаровзрывоопасности
PuO _x	Оксиды плутония состава гексагональный Pu_2O_3 , кубический $PuO_{1,5}$, кубический $PuO_{1,61}$ являются пирофорными.
	Диоксид плутония способен взаимодействовать с водой с выделением водорода.
	Водяные пары реагируют с PuO_2 с образованием водорода. Образование водорода
	в контейнерах для хранения повышает пожаровзрывоопасность ПМ. Материалы
	перед хранением или транспортированием должны подвергаться термической ста-
	билизации прокаливанием на воздухе и последующей герметизации в сварных
	контейнерах из нержавеющей стали.
PuH _x , PuC _x	Гидриды плутония являются твердыми веществами черного цвета, напоминающими металл, поведение которых зависит от размера частиц и состава. Малые частицы могут быть исключительно реакционноспособными по отношению к O_2 и H_2O , и порошки, близкие по составу к PuH_2 , могут быть пирофорными. Гидриды могут также реагировать с N_2 и CO_2 , хотя эти реакции довольно медленные. Все манипуляции и хранение должны производиться в инертной атмосфере.
Zr	Порошковый PuC _{1-х} химически активен и пирофорен. Тонкодисперсный цирконий горит на воздухе, а также в атмосфере N ₂ и CO ₂ . Взвесь
ΔI	порошка Zr в воздухе, содержащая 45–300 мг/л, легко взрывается. Порошок цирко-
	ния почти всегда содержит значительное количество гидрида ZrH_2 .
	Увлажненный порошок циркония горит интенсивнее, чем сухой, а тушение горя-
	щего циркония допустимо только засыпкой порошкообразными Ca F_2 или CaO, так
	как H_2O , $CaCl_2$, CO_2 и даже $CaCO_3$ энергично реагируют с цирконием.
	При работе с тонкодисперсным порошком циркония (2–5 мкм) имели место
	несчастные случаи.
	Температура воспламенения тонкодисперсного порошка циркония около 85°C.
	Грубые фракции порошков Zr имеют температуру воспламенения порядка 180— 200°C.
	Порошок Zr с размером частиц 10 мкм и более расценивается как малоопасный в обращении.
	Порошки циркониевых сплавов устойчиво горят при содержании в них свыше 80 % циркония.
	Тонкие порошки циркония могут самовоспламеняться на воздухе, а увлажненные — взрываться. В этом отношении цирконий является самым опасным из металлов, используемых в пиротехнике. Порошок воспламеняется при температурах выше 260°С. Компактный металл стоек к нагреванию.
	Цирконий при сплавлении с серебром, медью или золотом становится более вос- пламеняемым, возгорается и взрывается при трении.
	Измельченный порошок циркония, диспергированный в воздухе, самовоспламеня-
	ется при комнатной температуре, причем горение может принять взрывной харак-
	тер. Наблюдались случаи, когда увлажненные обрезки циркония, упакованные в
	бочки и хранившиеся под открытым небом, самовоспламенялись со взрывом.
	Практикой установлено, что при резке твэлов и сборок с циркониевой оболочкой
	обрезки циркония «искрят, но не горят».
	Необходимо принимать меры, не допускающие самовоспламенения скапливаю-
	щейся на фильтрах пыли, образующейся при резке циркониевых твэлов, а также
	осаждаемых из растворов на фильтрах мелкодисперсных частиц циркония, образу-
	ющихся в результате растворения твэлов из сплавов урана и циркония.
ZrH ₂	Цирконий легко адсорбирует водород уже при комнатной температуре, образуя
	хрупкий металлоподобный гидрид. Оптимальная температура поглощения водо-
	рода — около 300°C (под давлением). Выше 100°C при обычном давлении гидрид
_	циркония начинает выделять водород.

ПМ	Характеристика пожаровзрывоопасности
	Гидрид циркония применяется в воспламенительных составах.

к руководству по безопасности при использовании атомной энергии «Рекомендации по обеспечению пожаровзрывобезопасности технологических процессов с применением пирофорных материалов на объектах ядерного топливного цикла», утвержденному приказом Федеральной службы по экологическому, технологическому и атомному надзору от 3 декабря 2019 г. № 459.

Перечень критериев оценки пожаровзрывоопасности пирофорных материалов, применяемых в технологических процессах объектов ядерного топливного цикла

1. Для фиксированных значений:

- температуры технологического процесса;
- давления в технологическом оборудовании;
- соотношения ПМ и окислителя в технологической среде;
- соотношения окислителя и инертного компонента (газа) в технологической среде критерием пожаровзрывобезопасности технологического процесса является размер частиц ПМ, при превышении которого частицы не способны самовоспламениться при данных фиксированных значениях указанных технологических параметров.

2. Для фиксированных значений:

- размера частиц ПМ;
- давления в технологическом оборудовании;
- соотношения ПМ и окислителя в технологической среде;
- соотношения окислителя и инертного компонента (газа) в технологической среде критерием пожаровзрывобезопасности технологического процесса является непревышение температуры самовоспламенения при данных фиксированных значениях указанных технологических параметров.

3. Для фиксированных значений:

- размера частиц ПМ;
- температуры технологического процесса;
- давления в технологическом оборудовании;
- соотношения окислителя и инертного компонента (газа) в технологической среде критерием пожаровзрывобезопасности технологического процесса является непревышение нижнего концентрационного предела распространения пламени при данных фиксированных значениях указанных технологических параметров.

4. Для фиксированных значений:

размера частиц ПМ;

- температуры технологического процесса;
- давления в технологическом оборудовании;
- соотношения ПМ и окислителя в технологической среде критерием пожаровзрывобезопасности технологического процесса является превышение минимальной флегматизирующей концентрации флегматизатора (инертного газа) в технологической среде при данных фиксированных значениях указанных технологических параметров.

5. Для фиксированных значений:

- размера частиц ПМ;
- температуры технологического процесса;
- соотношения ПМ и окислителя в технологической среде;
- соотношения окислителя и инертного компонента (газа) в технологической среде критерием пожаровзрывобезопасности технологического процесса является непревышение давления в технологическом оборудовании при данных фиксированных значениях указанных технологических параметров.

к руководству по безопасности при использовании атомной энергии «Рекомендации по обеспечению пожаровзрывобезопасности технологических процессов с применением пирофорных материалов на объектах ядерного топливного цикла», утвержденному приказом Федеральной службы по экологическому, технологическому и атомному надзору от 3 декабря 2019 г. № 459.

Рекомендуемые методы контроля за показателями пожаровзрывоопасности пирофорных материалов, применяемых в технологических процессах объектов ядерного топливного цикла

- 1. Метод экспериментального определения температуры самовоспламенения твердых веществ и материалов (по ГОСТ 12.1.044-2018).
- 2. Метод экспериментального определения нижнего концентрационного предела распространения пламени по пылевоздушным смесям (по ГОСТ 12.1.044-2018).
- 3. Метод экспериментального определения условий теплового самовозгорания твердых веществ и пылей (по ГОСТ 12.1.044-2018).
- 4. Метод экспериментального определения минимальной энергии зажигания пылей (по ГОСТ 12.1.044-2018).
- 5. Метод экспериментального определения способности взрываться и гореть при взаимодействии с водой, кислородом воздуха и другими веществами (по ГОСТ 12.1.044-2018).
- 6. Метод экспериментального определения минимального взрывоопасного содержания кислорода и минимальной флегматизирующей концентрации флегматизатора в пылевоздушных смесях (по ГОСТ 12.1.044-2018).
- 7. Метод экспериментального определения максимального давления взрыва и скорости нарастания давления при взрыве пылей (по ГОСТ 12.1.044-2018).
- 8. Метод БЭТ для экспериментального определения удельной поверхности частиц ПМ (по ГОСТ 23401-90).

к руководству по безопасности при использовании атомной энергии «Рекомендации по обеспечению пожаровзрывобезопасности технологических процессов с применением пирофорных материалов на объектах ядерного топливного цикла», утвержденному приказом Федеральной службы по экологическому, технологическому и атомному надзору от 3 декабря 2019 г. № 459.

Перечень нормативно правовых и правовых актов, рекомендуемых для использования при обеспечении пожаровзрывобезопасности технологических процессов с применением пирофорных материалов на объектах ядерного топливного цикла

- 1. Федеральный закон от 22 июля 2008 г. № 123-Ф3 «Технический регламент о требованиях пожарной безопасности».
- 2. НП-016-05 «Общие положения обеспечения безопасности объектов ядерного топливного цикла (ОПБ ОЯТЦ)». Утверждены постановлением Федеральной службы по экологическому, технологическому и атомному надзору от 2 декабря 2005 г. № 11.
- 3. НП-098-17 «Установки по производству плутонийсодержащего ядерного топлива. Требования безопасности». Утверждены приказом Федеральной службы по экологическому, технологическому и атомному надзору от 23 июня 2017 г. № 217.
- 4. ГОСТ 12.1.044-18 «Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения». Введен в действие в качестве национального стандарта Российской Федерации с 1 мая 2019 г. приказом Федерального агентства по техническому регулированию и метрологии от 5 октября 2018 г. № 717-ст.
- 5. ГОСТ Р 54110-2010 «Водородные генераторы на основе технологий переработки топлива. Часть 1. Безопасность». Утвержден и введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 21 декабря 2010 г. № 804-ст.
- 6. «Правила перевозок опасных грузов по железным дорогам». Утверждены Советом по железнодорожному транспорту государств участников Содружества (протокол от 5 апреля 1996 г. № 15).